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INTRODUCTION 

This study investigated a computer-aided diagnosis (CADx) system for breast cancer by 

combining the following three data sources: mammogram films, radiologist-interpreted BI-RADS 

descriptors, and proteomic profiles of blood sera.  

Although mammography is the modality of choice for early detection of breast cancer1,2, it has a 
low positive predictive value (PPV). As a result, only 15 to 34% of women with radiographically-
suspicious, nonpalpable lesions are actually found to have a malignancy by histologic diagnosis after 
biopsy.3,4 The excessive biopsy of benign lesions raises the cost of mammographic screening5 and 
results in emotional and physical burden to the patients, as well as financial burden to society.  

In addition to mammography, both BI-RADS descriptors5 and clinical proteomics6 have been 
useful in differentiating benign from malignant breast masses. The combination of mammographic 
and proteomic information can lead to a more specific classifier for difficult cases. Ensemble 
classifiers for breast cancer combining multiple sources of information have been shown to 
outperform classifiers using only one of the information sources.7 

This research has two purposes. The first is to create three separate classifiers for breast cancer 
based on proteomic information, mammogram information, and radiologist-interpreted. The second 
is to combine the outputs of these three first-stage classifiers into one ensemble classifier for breast 
cancer, which will outperform any of the component classifiers. 
 

BODY 

 

Task 1. Build a Bayesian regression model classifier for breast cancer based on image 

features of digitized mammograms. Evaluate the model performance using honest leave-

one-out cross-validation (LOOCV) with the ROC area as the performance metric. 

Calculate the Bayesian posterior classification probability intervals to provide an honest 

assessment of the uncertainties of the predictive classifications. (Months 1-12) 

This task has already been completed during the current, first year and has resulted in one 

accepted and one submitted peer-reviewed publication as well as one full-length conference 

proceedings paper (see #1, #2, and #3 in Reportable Outcomes). On each digitized mammogram, 

a 512x512 region of interest (ROI) centered on the centroid of each calcification cluster was 

extracted. The automated image-processing scheme consisted of the following steps: (1) pre-
processing using unsharp masking, (2) segmentation of individual calcifications using a back-
propagation artificial neural network (BP-ANN) classifier, and (3) cluster classification using 
another BP-ANN classifier to reduce the number of false positive clusters. For each cluster, the 
algorithm calculated 22 image-processing features, consisting mostly of shape features for the 
calcifications and calcification clusters and of texture features for ROIs centered on the clusters. 

Once the features had been extracted from the mammogram, they were used to distinguish 

benign from malignant calcification lesions by classification models. In addition to Bayesian 

probit regression models, for comparison we also applied two well-established CADx classifiers, 

linear discriminant analysis (LDA), artificial neural network (ANN). We also applied two 

variants of a novel classifier, decision fusion: decision fusion to maximize the area under the 

ROC curve (DF-A), and to maximize the high-sensitivity region (TPF  0.90) partial area (DF-

P). Decision fusion was a novel classification method (See #1 in Reportable Outcomes). Figure 

1a shows the ROC curve for the Bayesian probit regression, and Figure 1b shows the set of ROC 

curves for the classifiers’ performances under 100-fold cross validation were AUC = 0.73 for 
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Bayesian probit regression, 0.68 ± 0.01 for LDA, 0.76 ± 0.01 for ANN, 0.85 ± 0.01 for DF-A, 

and 0.82 ± 0.01 for DF-P. Decision fusion significantly outperformed the other classifiers (p < 

0.001).  

 

 
Figure 1a: Bayesian probit regression Figure 1b: LDA, ANN, and decision fusion 

 

Task 2. Build a Bayesian regression model classifier for breast cancer based patient age 

and BI-RADS features from radiologists. Evaluate the model performance and 

classification uncertainties as in Aim 1. (Months 13-16) 

This task has already been completed and has resulted in publications (see #1 and #2 in 

Reportable Outcomes). The mammographic findings for each case in our database have been 
interpreted by dedicated breast imaging radiologists using the Breast Imaging Reporting and 
Data System (BI-RADS) lexicon from the American College of Radiology.8 The BI-RADS 
lexicon provides categorical descriptions (findings) for each mammographic feature. 

While the original research proposal focused only on microcalcification lesions, we have 
responded to one of the proposal reviewers and have extended the research project to include 
masses as well. Including masses will lend additional clinical relevance to this project. Currently, 
the radiologist-interpreted BI-RADS features are available only for mass cases. 

All of the classifiers were able to distinguish benign from malignant lesions well. The 

classifiers’ performances under 100-fold cross validation were AUC = 0.94 for Bayesian probit 

regression, 0.93 ± 0.01 for LDA, 0.93 ± 0.01for ANN, 0.94 ± 0.01for DF-A, and 0.93 ± 0.01 for 

DF-P. Decision fusion had a slight performance gain over the ANN and LDA (p = 0.02), but was 

comparable to Bayesian probit regression. The ROC curves of these classifiers are shown in 

Figures 2a and 2b. 
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Figure 2a: Bayesian probit regression Figure 2b: LDA, ANN, and decision fusion 

 

 

Task 3. Build a Bayesian regression model classifier for breast cancer based on 

proteomic profiles of blood serum samples. Evaluate the model performance and 

classification uncertainties as in Aim 1. (Months 16-28) 

We have done some preliminary work on the proteomics data, and our research here is still a 

work in progress. 

Women undergoing diagnostic biopsy at Duke University Medical Center for breast cancer 

between 2000-2004 were enrolled in this study.  Before cytoreductive surgery, women were 

consented for the study and blood was obtained. Serum, plasma, and white blood cells were 

aliquoted and cryogenically stored.  Two sets were constructed from these samples: 1) Forty-two 

women over the age of 55 with benign breast findings and 2) Forty-six women over the age of 55 

with invasive breast cancers greater than 1.5 cm. In addition, sera from 120 healthy women were 

used for controls.  

While the original research proposal included proteomic data from mass spectrometry 

spectra, these spectra were found to be too noisy for the purposes of classifying malignant from 

benign lesions. We are now using the much more specific Enzyme-Linked ImmunoSorbent 

Assay (ELISA) protocol to extract information about blood serum proteins. Sera were assayed 

for 52 different biomarkers using the Luminex platform and reagents. Because these biomarkers 

are expensive to collect, we are currently trying to identify a subset of important proteins by 

exploring feature-selection techniques on our proteomics pilot data set. Once the important 

proteins have been identified, more cases will be collected, allowing for further modeling and 

classifying. 

 
Task 4. Combine the outputs of the three Bayesian regression models into one ensemble 

classifier for breast cancer diagnosis prediction. Evaluate the model performance using the 
ROC area as the performance metric. (Months 28-36) 

Once we have finalized all three of the separate models described above, we will combine 

them into one ensemble classifier. 

 
KEY RESEARCH ACCOMPLISHMENTS 

• Developed a decision fusion model to combine various information sources 
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• Classified the mammogram and BI-RADS data sets using the following classification 
models: Bayesian probit regression, linear discriminant analysis, artificial neural network, 
and decision fusion 

• Established an internal collaboration as a data source for the proteomics data set, and 
initiated preliminary analysis of that data set. 

 

CONCLUSIONS 

The current work focuses on combining breast imaging and proteomics information for 

breast cancer diagnosis. This study is structured in two stages: (1) build classification models on 

each of the individual data sources, and (2) combine the models into one ensemble classifier.  
One significant research outcome was the development of a decision fusion classification 

algorithm. Decision fusion has the benefit of being robust in very noisy data sets, such as the 

calcification and proteomics data sets. On the more challenging calcification data set, decision 

fusion outperformed the other classifiers by achieving AUC = 0.85 ± 0.01. On the BI-RADS data 

set, all classifiers performed well, with decision fusion still performing the best with AUC = 0.94 

± 0.01. 

The proteomics work is still a work in progress, due to the relatively small number of cases 

that are currently available as well as the large number of noisy features in the data set. In future 

work, we will identify a subset of blood serum proteins that are useful for breast cancer 

classification. Once these proteins have been identified, we will collect more cases to increase 

the size of the proteomics data set. With a larger data set, we can construct predictive models. 

Finally, once these models for all three data sets have been finalized, we will combine them into 

one ensemble classifier.  

 

REPORTABLE OUTCOMES 
The following publications are attached as appendices 1-4 with the same numbers. The names of 
the fellow (Jesneck) and mentor (Lo) are boldfaced for emphasis. 
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Abstract 

As more diagnostic testing options become available to physicians, it becomes more 

difficult to combine various types of medical information together in order to optimize the 

overall diagnosis. To improve diagnostic performance, here we introduce an approach to 

optimize a decision-fusion technique to combine heterogeneous information, such as 

from different modalities, feature categories, or institutions. For classifier comparison we 

used two performance metrics: the ROC area under the curve (AUC) and the normalized 

partial area under the curve (pAUC). This study used four classifiers: linear discriminant 

analysis (LDA), artificial neural network (ANN), and two variants of our decision-fusion 

technique, AUC-optimized (DF-A) and pAUC-optimized (DF-P) decision fusion. We 

applied each of these classifiers with 100-fold cross validation to two heterogeneous 

breast cancer data sets: one of mass lesion features and a much more challenging one 

of microcalcification lesion features. For the calcification data set, DF-A outperformed the 

other classifiers in terms of AUC (p < 0.02) and achieved AUC = 0.85 ± 0.01. The DF-P 

surpassed the other classifiers in terms of pAUC (p < 0.01) and reached pAUC = 0.38 ± 

0.02. For the mass data set, DF-A outperformed both the ANN and the LDA (p < 0.04) 

and achieved AUC = 0.94 ± 0.01. Although for this data set there were no statistically 

significant differences among the classifiers  pAUC values (pAUC = 0.57 ± 0.07 to 0.67 ± 

0.05, p > 0.10), the DF-P did significantly improve specificity versus the LDA at both 98% 

and 100% sensitivity (p < 0.04). In conclusion, decision fusion directly optimized clinically 

significant performance measures such as AUC and pAUC, and sometimes 

outperformed two well known machine-learning techniques when applied to two different 

breast cancer data sets. 
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I. Introduction 

Breast cancer accounts for one-third of all cancer diagnoses among American women, 

has the second highest mortality rate of all cancer deaths in women 1, and is expected to 

account for 15% of all cancer deaths in 2005 2. Early diagnosis and treatment can 

significantly improve the chance of survival for breast cancer patients 3. Currently, 

mammography is the preferred screening method for breast cancer. However, high false 

positive rates reduce the effectiveness of screening mammography, as several studies 

have shown that only 13-29% of suspicious masses are determined to be malignant 4 5 6. 

Unnecessary surgical biopsies are expensive, cause patient anxiety, alter cosmetic 

appearance, and can distort future mammograms 7.  

 

Commercial products for computer-aided detection (CAD) have shown promise for 

improving sensitivity in large clinical trials. Most studies to date have shown CAD to 

boost radiologists  lesion detection sensitivity 8 9 10 11. To date, however, there are no 

commercial systems to improve specificity for breast cancer screening. To fill this need 

to improve the sensitivity of mammography, computer-aided diagnosis (CADx) has 

emerged as a promising clinical aid 12.  

 

There has been considerable CAD and CADx research based upon a rich variety of 

modalities and sources of medical information such as: digitized screen-film 
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mammograms 13 14 15 16 17, full-field digital mammograms 18, sonograms 19 20 21, MRI 

images 22, and gene expression profiles 23. Current clinically implemented CADx 

programs tend to use only one information source, although multimodality CADx 

programs 24 are beginning to emerge. Moreover, most CADx research has been 

performed using relatively homogeneous data sets collected at one institution, acquired 

using one type of digitizer or digital detector, or using features drawn from one source 

such as human-interpreted findings versus computer-extracted features. Increasingly 

however there is a trend towards boosting diagnostic performance by combining 

together data from many different sources to create heterogeneous data. We defined 

heterogeneous data as comprising multiple, distinct groups. Specifically, for this study 

we considered as heterogeneous any of the following data set characteristics: multiple 

imaging modalities, multiple types of mammogram film digitizers, data collected from 

multiple institutions, and various types of features extracted from the same image, 

especially computer-extracted and human-extracted features. Combining heterogeneous 

data types for classification is a difficult machine-learning problem, but one that has 

shown promise in bioinformatics applications 25 26 27.  

 

To meet the challenge of combining heterogeneous data types, we turned to a decision-

fusion method that operates by the following two steps: 1. Classifiers use feature 

subsets to generate initial binary decisions, and 2. These binary decisions are then 

combined optimally using decision fusion theory. Decision fusion offers the following 

advantages: It handles heterogeneous data sources well, reduces the problem 

dimensionality, is easily interpretable, and is easy to use in a clinical setting. Decision 

fusion has effectively combined heterogeneous data in many diverse classification tasks, 
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such as detecting land mines using multiple sensors 28, identifying persons using multiple 

biometrics 29, and CADx of endoscopic images using multiple sets of medical features 30. 

 

The purpose of this study was to optimize a decision-fusion approach for classifying 

heterogeneous breast cancer data. We compared this decision-fusion approach to a 

linear discriminant and an artificial neural network, which are well-studied techniques 

that have frequently been applied to breast cancer CADx 13 31 32 33. This study evaluates 

these classification algorithms on two breast cancer data sets using two different 

clinically relevant performance metrics.  

 

II. Methods 

A. Data 

For this study, we chose two different breast cancer data sets, which differed 

considerably in the type and number of patient cases as well as the type and number of 

medical information features describing those cases. 

 

Microcalcification Lesions 

Data set C consisted of all 1508 mammogram microcalcification lesions from the Digital 

Database for Screening Mammography (DDSM) 34. The outcomes were verified by 

histological diagnosis and follow-up for certain benign cases, yielding 811 benign and 

697 malignant calcification lesions. Figure 1 shows the feature group structure of this 

data set. The feature groups were 13 computer-extracted calcification cluster 

morphological features, 91 computer-extracted texture features of the lesion background 

anatomy, 2 radiologist-interpreted findings, 3 radiologist-extracted features from the 

Breast Imaging Reporting and Data System (BI-RADSTM, American College of Radiology, 
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Reston, VA) 35 and patient age. In total, data set C had 110 features and a sample-to-

feature ratio of approximately 14:1. Each mammogram was digitized with one of four 

digitizers: a DBA M2100 ImageClear at a resolution of 42 microns, a Howtek 960 at 43.5 

microns, a Howtek MultiRad850 at 43.5 microns, or a Lumisys 200 Laser at 50 microns. 

To study this large, heterogeneous data set, no attempt was made to restrict cases only 

to a single digitizer, as was common in most previous studies. Moreover, no 

standardization step was applied to the images to correct for the differences in noise, 

resolution, and other physical characteristics from the various digitizers. We used a 

512x512 pixel ROI centered on the centroid of each lesion (using lesion outlines drawn 

by the DDSM radiologists) for image processing and for generating the computer-

extracted features. We extracted morphological and texture (spatial gray level 

dependence matrix) features, which were shown to be useful in a previous study of 

CADx by Chan et al 31.  

 

This data set had many heterogenic characteristics, such as that it was collected at four 

different institutions, scanned on four types of digitizers with different physical 

characteristics, and included both human-extracted and computer-extracted features, 

such as shape and texture features. 

 

Mass Lesions 

Data set M consisted of 568 breast mass cases that were collected in the Radiology 

Department of Duke University Health System between 1999 and 2001. These cases 

were an extension of the data set described in detail in our previous studies 36 37. 

Definitive histopathologic diagnosis from biopsy was used to determine outcome, 
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yielding 370 benign and 198 malignant mass lesions. Figure 2 shows the feature group 

structure of this data set. Dedicated breast radiologists recorded all features.  

 

The mass data set was heterogeneous because it was comprised of 3 distinct types of 

data: 13 mammogram features, 23 sonogram features in turn drawn from 3 different 

lexicons (Ultrasound BI-RADS, Stavros, and others) 36, as well as 3 patient history 

features. In total data set M had 39 features and a sample-to-feature ratio of 

approximately 15:1.  

 

B. Decision Fusion 

There is a growing literature in the area of distributed detection. Although there is even 

some earlier work, several of the early classical references include the work of Tenney 

and Sandell, who introduced distributed detection using a fixed fusion processor and 

optimized the local processors 38. Chair and Varshney fixed the local processors, and 

optimized the fusion processor 39. Reibman and Nolte extended these previous studies 

by simultaneous optimization of the local detectors while deriving the overall optimum 

fusion design 40. Dasarathy summarizes some of the earlier work 41. 

 

Decision fusion theory describes how to combine local binary decisions optimally to 

determine the presence or absence of a signal in noise 38 39 40 41 42. The local binary 

decisions can come from any arbitrary source.  

 

Figure 3 provides a schematic of our decision-fusion method. Our algorithm is a two-

stage process, each with a likelihood ratio calculation. The first stage applies a separate 

likelihood ratio to each feature. These feature-level likelihood ratios are then compared 
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to separate thresholds to generate feature-level decisions. These feature-level decisions 

are then fused in the second stage by computing the likelihood ratio of the binary 

decision values. The second stage combines the feature-level decisions into one fused 

likelihood-ratio value, which can be used as a classification decision variable.  

 

Our technique offers the important advantage that it can reduce the dimensionality of the 

feature space of the classification problem by assigning a classifier to each feature 

separately. Considering only one feature at a time greatly reduces the complexity of the 

problem by avoiding the need to estimate multidimensional probability density functions 

(PDFs) of the feature space. Accurately estimating such multidimensional PDFs likely 

requires many more observations than a typical medical data set contains. Other 

benefits of decision fusion are that it is robust in noisy data 43, is not overly sensitive to 

the likelihood ratio threshold values,42 and can handle missing data values 44. Our 

decision-fusion technique can also be tuned to maximize arbitrary performance metrics 

(as described later in Section II C) that may be more clinically relevant, unlike more 

traditional classification algorithms that minimize mean squared error.  

 

1. Detection Theory Approach - the Likelihood Ratio 

Although decision fusion combines binary decisions regardless of how those decisions 

were made, it is still important to choose the right initial classifiers in order to pass as 

much information to the decision fuser as possible. In our algorithm, we used the 

likelihood ratio as the initial classifier and applied a threshold to generate the binary 

decisions on each feature. Previous work has shown the likelihood ratio to be an 

excellent classifier for breast cancer mass lesion data 45 46. 
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According to decision theory, the likelihood ratio is the optimal detector to determine the 

presence or absence of a signal in noise 47. For this study, the signal to be detected was 

the potential malignancy of a breast lesion. The null hypothesis (H0 ) was that the signal 

(malignancy) is not present in the noisy features, while the alternative hypothesis (H1) 

was that the signal is present.  

 
H0 : X = N

H1 : X = S + N
 (1) 

Sources of noise in the features included anatomical noise inherent in the mammogram 

or sonogram, quantum noise in the acquisition of the mammogram or sonogram, 

digitization noise and artifacts for data set C, and ambiguities in the mammogram 

reading process for the radiologist-interpreted findings in both data sets C and M.  

 

The likelihood ratio is the probability of the features under the malignant case divided by 

the probability of the features under the benign case: 

 features(X) =
P(X |H1)

P(X |H0)
, (2) 

where P(X |H1)  is the PDF of the observation data X given that the signal is present, 

and P(X |H0)  is the PDF of the data X given that the signal is not present. The 

likelihood ratio is optimal under the assumption that the PDFs accurately reflect the true 

densities. We estimated the one-dimensional PDFs of the features with histograms. We 

used Scott s rule to determine the optimal histogram bin width, 45 

 h = 3.5 n 1/ 3 , (3) 

where h  is the bin width,  is the standard deviation and n  is the number of 

observations. The interval of two standard deviations around the mean, [μ 2 ,μ + 2 ], 

was then subdivided by the bin width, h . We assigned the values falling outside this 
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interval to the extreme left or right bins. Next, we applied a threshold value, , to the 

likelihood ratio to produce a binary decision about the presence of the signal. 

 u =
1  if feature

0  if feature <

 
 
 

 (4) 

 

2. Fusing the Binary Decisions 

For the signal-plus-noise hypothesis H1, the probability of detecting an existing signal 

isP(u =1 |H1) = Pd  and of missing it isP(u = 0 |H1) =1 Pd . For the noise-only 

hypothesis H0 , the probability of false detection is P(u =1 |H0) = Pf  and of correctly 

rejecting the missing signal is P(u = 0 |H0) =1 Pf . Using these probabilities, the 

likelihood ratio value of a binary decision variable has a simple form, as shown in 

Equation (5).  

 decision (u) =
P(u |H1)

P(u |H0)
=

Pd

Pf
if u =1

1 Pd

1 Pf
if u = 0

 

 
  

 
 
 

 (5) 

We can then use the likelihood ratios of the individual local decision variables to 

calculate the joint likelihood ratio of the set of decision variables. Assuming that the local 

decision variables are statistically independent, the likelihood ratio of the fused classifier 

is a product of the likelihood ratios of the individual local decisions.  

 
  

fusion (u1,K,up ) = decision (ui)
i=1

p

=
P(ui |H1)

P(ui |H0)i=1

p

=
Pdi
Pfi

 

 
 

 

 
 

ui

i=1

p
1 Pdi
1 Pfi

 

 
 

 

 
 

1 ui

 (6) 

 

Note that we assume statistical independence of only the local binary decisions, not of 

the sensitivity, false-positive rate, or even the features on which the local decisions were 

made. 
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In our decision fusion theory approach we have made the important assumption that all 

the local decisions are statistically independent. While this appears to be a very strong 

assumption, using it in decision fusion often does not lower classification performance 

substantially below the performance of the optimal decision fusion processor for 

correlated decisions. Although we can construct an optimal correlated decision fusion 

processor with known decision correlations 48, it is difficult to estimate the correlation 

structure of the decisions accurately, especially given many decisions but only few 

observations. However, even with correlated decisions, the simplifying assumption of 

independent decisions often does not lower decision fusion performance. Liao et al. 

have shown that, under certain conditions for the case of fusing two correlated decisions, 

the independent fusion processor exactly matched the performance of the optimal 

correlated decision fusion processor. Even in many situations when the optimality 

conditions were not kept, the degradation of the fusion performance was not significant 

42. Another benefit of the independent local decisions assumption is that decision fusion 

can usually recover from weak signals and correlated features given enough decisions to 

fuse 43. Because we have a large number of local decisions by setting a separate local 

decision for each feature, our algorithm takes advantage of this performance benefit.  

 

C. Classifier Evaluation and Figures of Merit 

We used the ROC curve to capture the classification performance of our decision-fusion 

algorithm. Assuming independent local decisions, the probability density functions 

(PDFs) of the decision fusion likelihood ratio have a similar product form 42:  
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P( fusion |H1) = (Pdi)
ui (1 Pdi)

1 ui

i=1

p

P( fusion |H0) = (Pfi)
ui (1 Pfi)

1 ui

i=1

p
 (7) 

Using the fusion likelihood ratio value as a classification decision variable, the 

probabilities of detection and false alarm are calculated as follows: 

 

Pdfusion ( ) = P( = fusion |H1

fusion

)

Pf fusion ( ) = P( = fusion |H0

fusion

)
 (8) 

where  is a threshold on fusion  that determines the operating point on the ROC curve. 

By varying the value of the threshold , these Pdfusion ( ) and Pf fusion ( ) values trace the 

entire decision-fusion ROC curve.  

 

One can use the ROC curve to quantify classification performance by calculating 

summary metrics of the curve. Certain performance metrics have more significance in a 

clinical setting than others, especially when high sensitivity must be maintained. This 

study used two clinically interesting summary metrics of the ROC curve: the area under 

the curve (AUC), and the normalized partial area under the curve (pAUC) above a 

certain sensitivity value 49. For this study, we set the sensitivity value TPF = 0.90 for 

pAUC to reflect that diagnosing breast cancer at high sensitivities is clinically imperative. 

We used the non-parametric bootstrap method 50 to measure the means and variances 

of the AUC and pAUC values as well as to compare metrics from two models for 

statistical significance.  

 

D. Genetic Algorithm Search for the Optimal Threshold Set 
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The selection of the likelihood-ratio threshold values is important to maximize 

performance of the fused classifier. Threshold values very far from the best values often 

lowered the fused classifier s performance to near chance levels. A genetic algorithm 

searched over the likelihood-ratio threshold values for each feature to select a threshold 

set that maximized the desired performance metric or figure of merit (FOM),  

 optimal = argmax FOM( fusion (u; )) , (8) 

where the FOM is either AUC or pAUC, u  is the set of local decisions, and  is the set 

of feature-level likelihood-ratio thresholds. The fitness function of the genetic algorithm 

was set to the FOM in order to maximize the FOM value. We optimized for cross-

validation performance the following genetic algorithm parameters: the number of 

generations, population size, and rates of selection, crossover, and mutation. 

 

E. Decision Fusion with Cross Validation 

We used k-fold cross validation (k=100) to estimate the ability of the classifiers to 

generalize on our data sets. For each fold, a new model was developed, i.e., the 

likelihood ratio was formed on the k-1 subsets (99% of cases) used as training samples, 

and the genetic algorithm searched over the thresholds to maximize the performance 

metric on these training samples. Once the best thresholds had been found on the 

training set, they were then used to evaluate the algorithm on the one subset (1% of 

cases) withheld for validation. The resulting local decisions were then combined into the 

fused validation likelihood ratio test , fusion , as in Equation (6). The process was then 

repeated k times by withholding a different subset for validation, such that all cases are 

used for training and validation while simultaneously ensuring independence between 

those subsets. 
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Compiling all test , fusion  values at the end of the cross validation computations created a 

distribution of test, fusion (X)  of the test cases. We constructed an ROC curve from the 

test , fusion (X)  values, as in Equation (8), in order to measure the classification 

performance of the decision-fusion classifier with k-fold cross validation. 

 

F. Using Decision Fusion in a Diagnostic Setting 

Once the model has been fully trained and validated, it can similarly be applied to new 

cases by setting all of the existing data to be the training data and applying the new 

clinical case as a new validation case. The decision-fusion algorithm would recommend 

to the physician either a biopsy with a malignant classification or short-term follow-up 

with a very likely benign classification. 

 

G. Other Classifiers: Artificial Neural Network and Linear Discriminant 

We compared the classification performance of the decision fusion against both an 

artificial neural network (ANN) and Fisher s linear discriminant analysis (LDA), which are 

well-understood algorithms and are popular breast cancer CADx research tools.  

 

For the ANN, we used a fully-connected, feed-forward, error backpropagation network 

with a hidden layer of 5 nodes, implemented using the nnet package (version 7.2-20) for 

R statistical software (version 1.12, the R Project for Statistical Computing). For the LDA, 

we used the Statistics Toolbox (version 5.1) of MATLAB  (Release 14, Service Pack 2, 

Mathworks Inc, Natick MA). Both models were carefully verified against custom software 

previously developed within our group. We implemented our decision-fusion algorithm in 
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MATLAB, relying specifically on the Genetic Algorithm and Direct Search Toolbox 

(version 2) to find the best thresholds for the likelihood ratio values. 

 

III. Results 

A. Classifier Performance on Data Set C (Calcification Lesions) 

Figure 4 shows the validation ROC curves for the calcification data. Table 1 lists the 

classification performances of the four classifiers, while Tables 2 and 3 list the two-tailed 

p-values for the pairwise comparisons by AUC and pAUC, respectively. The DF-A 

showed the best overall performance, with AUC = 0.85 ± 0.01, and the DF-P was slightly 

worse with AUC = 0.82 ± 0.01. Both decision-fusion ROC curves were well above those 

of the LDA and ANN, both in terms of AUC (p < 0.0001) and pAUC (p < 0.02). None of 

the features were particularly strong by themselves; we ran an LDA on each feature 

separately, yielding on average AUC = 0.53 ± 0.03, with a maximum of AUC = 0.66 for 

the best feature.  

 

The DF-P curve (pAUC = 0.38 ± 0.02) crossed the DF-A curve (pAUC = 0.28 ± 0.03) at 

the line TPF = 0.9. In order to gain high-sensitivity performance, DF-P sacrificed 

performance in the less clinically relevant range of TPF < 0.9. The DF-A beat the DF-P in 

terms of AUC (p = 0.018) but lost in pAUC (p < 0.01). Both decision-fusion classifiers 

greatly outperformed the both the ANN (pAUC = 0.14 ± 0.02) and LDA (pAUC = 0.09 ± 

.06) in terms of pAUC.  

 

B. Classifier Performance on Data Set M (Mass Lesions) 
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Figure 5 shows the validation ROC curves of the classifiers for the mass data set. Table 

4 lists the classification performances of the four classifiers, whereas Tables 5 and 6 list 

the p-values for the pairwise comparisons by AUC and pAUC, respectively. For this data 

set, all the classifiers had higher but very similar performance, with AUC ranging from 

0.93 ± 0.01 (LDA) to 0.94 ± 0.01 (DF-A). With the exception of DF-P (p = 0.50), the DF-A 

nonetheless significantly outperformed both the LDA (p = 0.021) and the ANN (p = 

0.038) in terms of AUC. The LDA, ANN, and DF-P curves were all very similar, for both 

AUC (p > 0.10) and pAUC (p > 0.10). Figure 5 (b) shows the ROC curves in the high 

sensitivity region above the line TPF = 0.90. The classifiers  pAUC values ranged 

narrowly from 0.57 ± 0.07 (ANN) to 0.67 ± 0.05 (DF-P), all close enough to show no 

statistically significant differences (p > 0.10). However, the DF-P did have a higher 

specificity than the LDA at both 98% sensitivity (0.37 ± 0.10 vs. 0.13 ± 0.13, p = 0.04) 

and at 100% sensitivity (0.34 ± 0.08 vs. 0.09 ± 0.12, p = 0.03).  The DF-P curve passed 

the DF-A curve approximately at the line TPF = 0.90 and yielded a slightly higher pAUC 

(0.67 ± 0.05 vs. 0.63 ± 0.07), although this improvement was not statistically significant 

(p = 0.48). 

  

IV. Discussion 

The multitude of medical data becoming available to physicians presents the problem of 

how best to integrate the information for diagnostic performance. Despite recent 

availability of this information, current CADx programs for breast cancer tend to use only 

one type of data, usually digitized mammogram films. Because many clinical tests 

provide complementary information about a disease state, it is important to develop a 

CADx system that incorporates data from disparate sources. However, combining 
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disparate data types together for classification is a difficult machine-learning problem. 

This study used the likelihood-ratio detector and decision-fusion classifier to detect the 

presence of a malignancy (a signal) within medical data (noisy features). We also 

compared the performance of this classifier to two popular classifiers in the CADx 

literature, LDA and ANN, and we measured the diagnostic performance with two 

classification metrics, ROC AUC and pAUC. Finally, we performed these studies using 

two very different data sets in order to assess performance differences due to the data 

set itself. 

 

Data set C (calcification lesions) had a stronger nonlinear component, indicated by the 

fact that the ANN AUC was much greater than the LDA AUC. The robustness of the 

decision-fusion algorithm is evident in its good performance on this weaker, nonlinear, 

and noisy data set. Decision fusion significantly outperformed the ANN and LDA on the 

calcification data set for both performance metrics. Figure 4 and Table 1 show that the 

biggest performance gain is in the pAUC metric, for which decision fusion doubled the 

performance of the other classifiers. 

 

On data set M (mass lesions), all four classifiers seemed to be saturated at a high level 

of performance in terms of both AUC and pAUC, as shown in Figure 5 and Table 4. 

Performances were largely equivalent across all models, except for two trends. In terms 

of AUC, the DF-A outperformed both the ANN and the LDA (p = 0.038 and 0.021, 

respectively). Although on this data set decision fusion offered only relatively modest 

gains in pAUC, it did achieve a significantly better specificity than the LDA at several of 

the highest sensitivities of the ROC curve (p < 0.05). 
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This decision-fusion algorithm has many potential benefits over more traditional 

classification algorithms. Decision fusion can be optimized for any desired performance 

metric by incorporating the metric into the fitness function of the genetic algorithm for its 

search over the likelihood-ratio thresholds. This advantage has important clinical 

implications, as both the physician and the CADx algorithm are constrained to operate at 

high sensitivity. The performance metric can emphasize good performance at high 

sensitivities and deemphasize performance at clinically unacceptable low sensitivities. 

Therefore we expect the DF-A curve to maximize AUC and the DF-P curve to maximize 

pAUC. The DF-P curve should fall under the DF-A curve for low FPF values but should 

cross the DF-A curve at the line TPF=0.90 to capture a greater pAUC value. Figures 4 

and 5 show evidence that the DF-P did optimize pAUC. The DF-P ROC curves crossed 

the DF-A curves at the line TPF = 0.90 and do in fact have a larger pAUC value than the 

DF-A curves. Another advantage is that decision fusion is robust and can recover from 

noisy, weak features. The likelihood-ratio classifier passes information about the strength 

or weakness of a feature to the decision fuser, which adjusts the influence given to that 

feature. This feature-strength information is the ROC operating point (sensitivity and 

specificity) determined by the likelihood-ratio threshold that was found by the genetic 

algorithm search. Figure 3 shows a schematic of this information flow from the individual 

features to the decision fuser. The robustness of the algorithm also suggests that 

decision fusion may be able to reach the asymptotic validation performance with fewer 

data. This is important for most medical researchers who are starting to collect new 

databases and for any databases that are expensive to collect. Because our decision-

fusion technique needs to estimate only one-dimensional PDFs, which require much 

fewer data points than multidimensional PDFs, decision fusion needs many fewer data 

points for training. For this reason, the decision-fusion algorithm may be able to handle 
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typical clinical data sets with missing data, as shown in previous work with decision 

fusion 44.  

 

Drawbacks of the decision-fusion algorithm include losing potentially useful feature 

information by reducing the likelihood-ratio values of the features to a binary value. 

Although the algorithm loses some feature information in this step, it recovers by 

optimally fusing the remaining binary feature information from that point forward. In the 

ideal case, if the true underlying multivariate distribution of the data happens to be 

known or can be estimated with a high degree of confidence, then the Bayes classifier 

can take this information into account and is theoretically optimal. However, since the 

true underlying distribution is almost never known in practice, decision fusion is a good 

alternative method, especially for small and noisy data sets. 

  

V. Conclusions 

We have developed a decision-fusion classification technique that combines features 

from heterogeneous data sources. We have demonstrated the technique on both a data 

set of two different breast imaging modalities and a data set of human-extraced versus 

computer-extracted findings. With our data, decision fusion always performed as well as 

or better than the classic classification techniques LDA and ANN. The improvements 

were all significant for the more challenging data set C, but not always significant for the 

less challenging data set M. Such a statement may not reflect the full diversity of these 

data sets, which differ in many respects, including linear separability, numbers of cases 

and features, and feature correlations. Future work will explore the contribution of such 

factors in order to understand the full potential and limitations of the decision-fusion 
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technique. In conclusion, the decision-fusion technique showed particular strength in the 

task of combining groups of weak, noisy features for classification. 
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Table Legends 

 

Table 1. Classifier Performance on Data Set C (Calcification Lesions) 

The table shows the AUC and pAUC values for the ROC curves of the four classifiers 

under 100-fold cross validation. The performance values exhibited a wide range. The 

DF-A scored the best for AUC, while DF-P scored highest for pAUC, as expected. The 

decision fusion curves soundly outperformed both the ANN and LDA in terms of pAUC. 

 

Table 2. P-values for AUC Comparisons for Data Set C (Calcification Lesions) 

The confusion matrix shows the p-values for the pairwise comparisons of the classifiers  

AUC values. All pairwise comparisons were statistically significant.  

 

Table 3. P-values for pAUC Comparisons for Data Set C (Calcification Lesions) 

The confusion matrix shows the p-values for the pairwise comparisons of the classifiers  

pAUC values. All pairwise comparisons were statistically significant.  

 

Table 4. Classifier Performance on Data Set M (Mass Lesions) 

The table shows the AUC and pAUC values for the ROC curves of the four classifiers 

under 100-fold cross validation. All four classifiers performed very similarly on this data 

set. The DF-A scored the best for AUC, whereas the DF-P scored highest for pAUC, 

although both were still within one standard deviation of each of the other classifiers  

performances.  

 

Table 5. P-values for AUC Comparisons for Data Set M (Mass Lesions) 
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The confusion matrix shows the p-values for the pairwise comparisons of the classifiers  

AUC values. The DF-A outperformed the ANN and LDA. Among the DF-P, ANN, and 

LDA, there were no statistically significant pAUC differences.  

 

Table 6. P-values for pAUC Comparisons for Data Set M (Mass Lesions) 

The confusion matrix shows the p-values for the pairwise comparisons of the classifiers  

pAUC values. None of the pAUC comparisons were statistically significant. Although 

pAUC scores were similar, the DF-P did have a higher specificity than the LDA at both 

98% sensitivity (0.37 ± 0.10 vs. 0.13 ± 0.13, p = 0.04) and at 100% sensitivity (0.34 ± 

0.08 vs. 0.09 ± 0.12, p = 0.03). 
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Tables 

Table 1. Classifier Performance on Calcification Data Set C 
 
 

Classifier AUC pAUC 

DF-A 0.85 ± 0.01 0.28 ± 0.03 

DF-P 0.82 ± 0.01 0.38 ± 0.02 

ANN 0.76 ± 0.01 0.14 ± 0.02 

LDA 0.68 ± 0.01 0.09 ± 0.06 

 
 
 
 

  



 23

Table 2. P-values for AUC Comparisons for Calcification Data Set C 
 
 

 DF-A DF-P ANN LDA 

DF-A  0.018 < 0.0001 < 0.0001 

DF-P      0.0001 < 0.0001 

ANN    < 0.0001 

LDA     
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Table 3. P-values for pAUC Comparisons for Calcification Data Set C  
 
 

 DF-A DF-P ANN LDA 

DF-A  0.0084 0.018 < 0.0001 

DF-P      0.0001 < 0.0001 

ANN    0.016 

LDA     
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Table 4. Classifier Performance on Mass Data Set M 
 
 

Classifier AUC pAUC 
DF-A 0.94 ± 0.01 0.63 ± 0.07 
DF-P 0.93 ± 0.01 0.67 ± 0.05 
ANN 0.93 ± 0.01 0.57 ± 0.07 
LDA 0.93 ± 0.01 0.59 ± 0.06 
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Table 5. P-values for AUC Comparisons for Mass Data Set M 
 

 
 DF-A DF-P ANN LDA 

DF-A  0.50 0.038 0.021 

DF-P   0.20 0.17 

ANN    0.53 

LDA     
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Table 6. P-values for pAUC Comparisons for Mass Data Set M 
 

 
 DF-A DF-P ANN LDA 

DF-A  0.48 0.45 0.27 

DF-P   0.14 0.12 

ANN    0.46 

LDA     
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Figure Legends 

 

Figure 1. Feature Group Structure for Calcification Data Set C (Calcification Lesions) 

The features of the calcification data set consisted of three main groups: computer-

extracted features, radiologist-extracted features, and patient history features. The 

computer-extracted features were morphological and shape features of the automatically 

detected and segmented microcalcification clusters within the digitized mammogram 

images. The radiologist-extracted features comprised both radiologist-interpreted 

findings and BI-RADS features. This data set consisted of 512x512 pixel ROIs of all 

1508 calcification lesions in the Digital Database for Screening Mammography (DDSM). 

This data set had many heterogenic characteristics, such as that it was collected at four 

different institutions, scanned on four digitizers with different noise characteristics, and 

included both human-extracted and computer-extracted features, such as shape and 

texture features. 

 

Figure 2. Feature Group Structure for Mass Data Set M (Mass Lesions) 

The features of the mass data set consisted of mammogram features, sonogram 

features, and patient history features. The mammogram features comprised both BI-

RADS features and radiologist-interpreted findings. The sonogram features consisted of 

ultrasound BI-RADS features, Stavros features, and other ultrasound mass descriptors. 

All image features were radiologist-extracted features. The mass data set was 

heterogeneous in including both mammogram and sonogram views of the breast. Both 

mammogram and sonogram feature sets were as well as including patient history 

features.  
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Figure 3. The Role of Likelihood-ratio Thresholds for Decision Fusion 

The first column shows plots of the log-likelihood-ratio vs. feature value for each feature.  

The algorithm calculated the likelihood ratio and then thresholded it separately for each 

feature. The threshold determined the ROC operating point of the likelihood-ratio 

classifier of a particular feature. Next, the algorithm combined the binary decisions from 

the feature-level likelihood ratio classifiers using decision fusion theory to produce the 

likelihood ratio of the fused classifier.  

 

Figure 4. ROC Curves for Data Set C (Calcification Lesions) 

The classifiers  ROC curves for 100-fold cross validation are shown. Figure 2 (a) shows 

the full ROC curves, while Figure 2 (b) shows only the high-sensitivity region (TPF  

0.90). For the calcification data set, the four classifiers yielded differing classification 

performance under 100-fold cross validation. Both decision-fusion curves lay significantly 

above the LDA and ANN curves, both in terms of AUC and pAUC. As expected, the 

decision-fusion classifiers achieved the highest scores of all the classifiers for their target 

performance metrics; DF-A attained the greatest AUC, whereas DF-P attained the 

greatest pAUC. The DF-P curve surpassed the DF-A curve and dominated the other 

curves above the line TPF = 0.90. In order to gain high-sensitivity performance, DF-P 

sacrificed performance in the less clinically relevant range of TPF < 0.90. 

 

Figure 5. ROC Curves for Data Set M (Mass Lesions) 

For the mass data set, all classifiers had high levels of classification performance. The 

DF-A and DF-P achieved the highest AUC and pAUC, respectively. In terms of AUC, the 

DF-A outperformed both the ANN and LDA (p = 0.038 and 0.021, respectively). In Figure 

5 (b), the DF-P curve had slightly more partial area than the other curves. Despite having 
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statistically equivalent partial areas, the DF-P had a greater specificity than the LDA at 

high sensitivities TPF = 0.98 (p = 0.03). 
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Figures 

 
Figure 1. Feature Group Structure for Calcification Data Set C (Calcification Lesions) 
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Figure 2. Feature Group Structure for Mass Data Set M (Mass Lesions) 
 



 33

Figure 3. The Role of Likelihood-ratio Thresholds for Decision Fusion 
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Figure 4. ROC Curves for Data Set C (Calcification Lesions)  
 
 
 
 

  
 (a) ROC curves (b) Partial ROC curves (TPF  0.90) 
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Figure 5. ROC Curves for Data Set M (Mass Lesions) 
 
 

 
 

  
 (a) ROC curves (b) Partial ROC curves (TPF  0.90) 
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Abbreviations 
 
ANN Artificial Neural Network 
AUC Area Under the ROC curve 
CAD Computer-aided Detection 
CADx Computer-aided Diagnosis 
DDSM Digital Database for Screening Mammography 
DF-A AUC-optimized Decision Fusion 
DF-P pAUC-optimized Decision Fusion 
FPF False Positive Fraction 
LDA Linear Disciminant Analysis 
pAUC Partial Area Under the ROC curve (TPF  0.90) 
Pd Probability of Detection 
Pf Probability of False Alarm 
ROC Receiver Operating Characteristic 
SGLD Spatial Gray Level Dependence 
TPF True Positive Fraction 
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Abstract 
 
Purpose: To develop computer-aided diagnosis (CADx) models using both mammographic and 

sonographic descriptors and to estimate the generalization performance of these models on 

future cases. 

Materials and Methods: Institutional Review Board approval was obtained for this HIPPA-

compliant study. Mammographic and sonographic exams were performed on 737 patients, 

yielding 803 breast mass lesions (296 malignant, 507 benign). Radiologist-interpreted features 

from the mammograms and sonograms were used as input features by a linear discriminant 

analysis (LDA) and an artificial neural network (ANN) to differentiate benign from malignant 

lesions. An LDA using all the features was compared to an LDA using only stepwise-selected 

features. Classification performances were quantified using receiver operating characteristic 

(ROC) analysis and were evaluated in a train, validate, and retest scheme. On the retest set, both 

LDAs were compared to the radiologists  overall assessment score of malignancy.   

Results: Both the LDA and ANN achieved high classification performance with cross-validation 

(AUC = 0.92 ± 0.01 and 0.90AUC = 0.54 ± 0.08 for the LDA, AUC = 0.92 ± 0.01 and 0.90AUC = 0.55 

± 0.08 for the ANN). Both models also generalized very well to the re-test set, with no statistically 

significant performance differences between the validate and retest sets (p > 0.1). On the retest 

set, there were also no statistically significant performance differences between the LDA using all 

features and using only the stepwise selected features (p > 0.3) and between either LDA and the 

radiologists  assessment score (p > 0.2). 

Conclusion: The results showed that combining mammographic and sonographic descriptors in 

a CADx model can result in high classification and generalization performance. On the retest set, 

the LDA matched the radiologists  classification performance.  

 
 



Introduction 
 

Although mammography is the only modality proven to reduce the mortality due to breast cancer, 

it has a low specificity for benign lesions. Because of mammography s low specificity, many 

women undergo unnecessary breast biopsies. As many as 65-85% of breast biopsies are 

performed on benign lesions (1-3). Not only does unnecessary biopsy increase the cost of 

mammographic screening (4), but it also subjects patients to avoidable emotional and physical 

burdens.  

 

To improve the accuracy of mammography, researchers have used computer aids to help 

radiologists detect (5-7) and diagnose (8-11) suspicious breast lesions. Some studies have 

shown that such computer-aided diagnosis (CADx) systems have increased the overall diagnostic 

sensitivity and specificity. Lesions determined to be very likely benign may be recommended for 

short-term follow-up rather than biopsy (12, 13). 

 

CADx models often use breast morphology descriptors of the Breast Imaging Reporting and Data 

System (BI-RADS) lexicon. BI-RADS was developed by the American College of Radiology 

(ACR) to standardize the interpretation of mammograms (14-17). Originally BI-RADS was applied 

to only mammography, but the crucial adjunct role of sonography has recently led the ACR to 

develop a BI-RADS lexicon for breast sonography as well. Sonographic BI-RADS is a useful tool 

to help standardize the characterization of sonographic lesions (17, 18) and facilitate clinician 

communication.  

 

Currently, the primary clinical role for sonography is to aid in distinguishing simple cysts from 

solid masses, as well as to direct aspirations, wire localizations, and ultrasound guided biopsies. 

More recently, several authors have investigated the role of sonography in helping to differentiate 

malignant from benign breast lesions (19-23). There have also been many computer-aided 



diagnosis studies in breast sonography, which are based upon image features automatically 

extracted by computer vision algorithms (24-32).  To the best of our knowledge, there has not yet 

been a study using the standardized BI-RADS sonographic findings as the basis of a predictive 

model, nor to combine the use of BI-RADS mammographic and sonographic findings for that 

purpose. 

 

A previous study (33) assessed the positive predictive value (PPV) and negative predictive value 

(NPV) of the individual sonographic BI-RADS features. This study extends previous work by using 

a larger database of mass lesions and by developing and evaluating decision models based upon 

the BI-RADS features, both mammographic and sonographic. 

 
 
Materials and Methods 

 

Patient Population 

The cases for analysis in this study were an extension of the data set described in detail in a 

previous study (33). The cases were collected between 2000 and 2005 at our institution. The data 

set included 803 lesions, of which 296 were malignant and 507 were benign, and 389 were 

palpable and 414 nonpalpable. The patient ages ranged from 17 to 87 years, with a median age 

of 50 years. The same inclusion and exclusion guidelines as described previously (33) applied to 

this data set. Institutional review board approval was obtained for this retrospective study 

including a waiver of informed consent. Cases for analysis in this study were selected from those 

recommended for biopsy and were included in the study if the lesions corresponded to solid 

masses on sonography and if both mammographic and sonographic films taken before the biopsy 

were available for review.  

 

Features Used 



All patients underwent both mammography and sonography. The mammographic exam consisted 

of both craniocaudal and mediolateral-oblique views, with additional true lateral and spot 

compression magnification in almost all cases. Sonographic images were acquired in both radial 

and antiradial projections with and without caliper measurements. Additional gray-scale images 

were obtained in almost all cases to better show the lesion. Doppler, color Doppler, and power 

Doppler images were not part of the routine imaging protocol but were provided for review when 

available. One of four dedicated breast radiologists with 6-11 years of experience used BI-RADS 

lexicon descriptors to describe the lesions, as described previously (33). Information about the 

patient s age, physical examination findings, family history of breast cancer, and personal history 

of breast malignancy was available to each radiologist to most accurately reproduce a realistic 

clinical situation. The radiologist was blinded to the histologic diagnosis during the evaluation. Of 

the total 37 features, 13 were mammographic BI-RADS, 13 were sonographic BI-RADS features, 

4 were ultrasound features suggested by Stavros et al. (19), 4 were other ultrasound features, 

and 3 were patient history features.  The 13 mammographic BI-RADS features were mass size, 

parenchyma density, mass margin, mass shape, mass density, calcification number of particles, 

calcification distribution, calcification description, architectural distortion, associated findings, 

special cases, comparison with prior, and mass size. The 13 sonographic BI-RADS features were 

mass shape, mass orientation, mass margin, posterior acoustic features, radial diameter, 

antiradial diameter, anterior-posterior diameter, calcifications within mass, echo texture, lesion 

boundary, echo pattern, special cases, and vascularity. The five features suggested by Stavros et 

al were mass shape, mass margin, acoustic transmission, thin echo pesudocapsule, and mass 

echogenicity. The four other sonographic mass descriptors were edge shadow, cystic component, 

and two mammographic BI-RADS descriptors applied to ultrasound: mass shape and mass 

margin. The three patient history features were patient age, family history, and indication for 

ultrasound. 

 



In addition to the BI-RADS and Stavros descriptors, the radiologists also recorded their 

assessment about the malignancy of the lesion as an integer ranging from 0 for unquestionably 

benign to 100 for unquestionably malignant. The gut assessment rating was not used as an input 

to the CADx models, but rather as a comparison to the models  output for classification 

performance.  

 

Predictive Modeling and Sampling 

For models in this study, we used both linear discriminant analysis (LDA) and artificial neural 

networks (ANNs). The LDA was a Fisher s linear discriminant. The ANNs were three-layer (one 

hidden layer), feed-forward, and error back-propagation artificial neural networks. These are the 

most popular methods used in many previous studies by our group as well as the rest of the field. 

 

In order to assess the usefulness and risk of using computer-aided diagnosis (CADx) models in 

the clinic, it is crucial to have a good estimate of their performance on future cases (or 

generalization). For limited data and more complicated models, the traditional method of cross-

validation could still pose a danger of optimistically biasing the testing performance; it is common 

to optimize certain global parameters (such as feature selection for the LDA or the number of 

hidden nodes of the ANN) to maximize cross-validation performance. With cross-validation the 

scientist is able to use knowledge of all the data to make modeling decisions, whereas with 

generalization such information is not available for yet unseen future cases. Therefore optimizing 

the models for cross-validation performance could lead to reduced generalization performance. 

 

In order to avoid these overfitting pitfalls and to better estimate generalization ability of each 

model, we used a train, validate, and retest scheme. In this scheme the data set is divided into 

sets: a train/validate set and a retest set. The retest set is held aside until after the models are 

finalized, as not to influence any of the modeling process. All modeling decisions are made only 

on the train/validate set. The model parameters are optimized to maximize cross validation on the 



train/validate set. Once the model s parameter values are set, the model is then trained on the 

entire train/validate set. The trained model is then applied to the retest set.  

 

In particular, for our dataset of 803 lesions, we chose the first 500 cases in chronological order for 

the train/validate set and the remaining 303 cases for the retest set. We chose the ANN s 

architecture and parameter settings to optimize its cross-validation performance on the 

train/validate set. Once the modeling decisions had been made, we trained the LDA and ANN on 

all the cases in the train/validate set to determine a single, final set of weights, which were then 

applied to the retest set.  

 

Classifier Performance Evaluation 

To use the LDA or ANN model as a diagnostic aide, one could select a threshold value, so that 

cases with output values below the threshold would be considered very likely benign and 

therefore candidates for follow-up rather than biopsy. Those cases with model outputs greater 

than the threshold would be considered suspicious for malignancy and recommended for biopsy. 

Varying the threshold value results in a tradeoff between sensitivity and specificity. The entire 

range of sensitivity and specificity values for a classifier is illustrated by the receiver operating 

characteristic (ROC) curve (34, 35). In order to quantify a classifier s performance, we used the 

following five summary measures of the ROC curve: area under the ROC curve (AUC), the partial 

area, (0.90AUC), as well as the specificity, positive predictive value (PPV), and negative predictive 

value (NPV) for a given sensitivity level. The AUC represents the average specificity over all 

sensitivities and ranges from 0.5 (chance performance) to 1.0 (perfect performance). Since high 

sensitivity is essential for a classification task, a more relevant performance measure is the 

0.90AUC, which represents the average specificity performance of the classifier at sensitivities from 

90% to 100%. Whereas the two previous measures provide an overall summary of performance, 

the remaining three are clinically relevant measures corresponding to a single threshold value, 



which for breast cancer applications is usually chosen to deliver nearly perfect sensitivity such as 

98% (36, 37).  

 

Results 

Generalization between Validating and Retesting 

Table 1 shows the LDA performances with both 100-fold cross-validation on the train/validate set 

and retest performance on the retest set. The LDA achieved high classification performance, with 

AUC = 0.92 ± 0.01 and 0.90AUC = 0.54 ± 0.08 on the validate set and AUC = 0.92 ± 0.02 and 

0.90AUC = 0.52 ± 0.08 on the retest set. The LDA generalized well; there were no statistically 

significant differences between the performance metrics of the validate set and those of the retest 

set (p > 0.10). In addition to the entire ROC curves of the LDA performance, individual thresholds 

also generalized very well. Table 2 shows that the same threshold value determined very similar 

true-positive fraction (sensitivity) and false-positive fraction (1-specificity) operating points in the 

high-sensitivity region on both ROC curves.  

 

The ANN also performed very well, achieving AUC = 0.92 ± 0.01 and 0.90AUC = 0.55 ± 0.08 on the 

validate set and AUC = 0.91 ± 0.02 and 0.90AUC = 0.57 ± 0.06 on the retest set. The ANN 

performed comparably on the validate and retest set, with no significant differences in either 

metric (p > 0.10). 

 

Comparison of LDA and ANN Performances 

The two types of models, LDA and ANN, had very similar performances on both the validation 

and retest sets; the differences were not statistically significant (p > 0.10). In the interest of 

brevity, the ANN performance tables are not shown because they show very similar trends as the 

LDA performance tables. 

 



Figure 1 depicts the four models  good generalization performance graphically. The ROC curves 

for the LDA and ANN in both testing paradigms appear in Figure 1. Figure 1 (a) shows the entire 

ROC curves, while 1 (b) shows only the high-sensitivity region (TPF  0.90) of those curves. The 

discrepancies among the curves were very minor, and the curves overlap each other. The 

similarity of the ROC curves showed that all four had essentially indistinguishable classification 

performance.  Figure 1 shows good evidence of generalization for the LDA and ANN because 

there was no performance drop from the validation curves to the retest curves.  

 

Feature Selection and Generalization of Simplified Model  

For the LDA, we also performed a stepwise feature selection, which chose the following 14 

features: patient age, calcification distribution, calcification description, associated findings, 

comparison with prior, anterior-posterior diameter, indication for ultrasound, Stavros mass shape, 

BI-RADS mass margin, edge shadow, cystic component, ultrasound lesion boundary, surrounding 

tissue effects, and ultrasound special findings. Feature selection was done using the validate set 

only. On the retest set, an LDA using only these stepwise-selected features performed 

comparably with no significant difference compared to the LDA using all the features (AUC = 

0.92±0.02 vs. 0.91±0.02, p > 0.3). The full performance table for the LDA with the stepwise-

selected features is not shown due to its close similarity to the table of the fully featured LDA. 

 

Comparing the LDA to the Radiologists  Assessment of Malignancy 

Table 3 compares the retest performance of the LDA against the radiologists  assessment rating 

on the retest set. Like the LDA, the radiologists  gut assessment also achieved high classification 

performance on the retest set, with AUC = 0.92 ± 0.02 and 0.90AUC = 0.52 ± 0.06 on the retest 

set. There were no statistically significant differences in any of the performance metrics of the 

LDA and radiologists  overall gut assessment (p > 0.2). For example, on this retest data set the 

LDA and radiologists performed with very similar NPV values (97±1% versus 98±1%, p = 0.25). 

 



Figure 2 shows the ROC curves for the LDA with all features, the LDA with the stepwise-selected 

features, and the radiologists  assessment of malignancy. There were no statistically significant 

differences in any of the performance metrics among the three ROC curves (p > 0.2). Although 

the radiologist curve crossed over the LDA curves several times, even at the points of greater 

divergence, the differences were not statistically significant (p > 0.2).  

 

Figure 3 depicts the histograms of the LDA output (Fig. 3 a) and radiologists  gut assessment 

(Fig. 3 b) values for the retest set. The histograms show the distinction in the output distributions 

between the benign and malignant lesions. The values for the benign lesions tended to fall on the 

left of the histogram plot with values around zero. Those for the malignant lesions were 

concentrated on the right of the plots, around one for the LDA and 100 for the radiologists  

assessment values. There were few values in the center regions, compared to those on the 

extremes.  

 

Example patient cases are presented in Figures 4 through 6 to illustrate situations where 

radiologists and computer models agree as well as disagree. Shown in Figure 4, Patient 1 

presented with a well-defined, oval, well-circumscribed mass, which indicated a benign lesion. 

The histopathology result indicated fibroadenoma. Both the LDA and radiologist considered this 

case very benign, giving scores of 0.02/1.00 and 0/100, respectively. Shown in Figure 5, Patient 2 

presented with a mass with irregular shape, indistinct margin, and shadowing with echogenic 

tails. Histopathologic diagnosis indicated that this lesion was invasive ductal carcinoma. Both the 

LDA and radiologist considered this case very malignant, with scores of 0.99/1.00 and 95/100, 

respectively. Shown in Figure 6, Patient 3 presented with a mass with an ill-defined margin in the 

mammogram. In the ultrasound image the lesion appeared circumscribed and oval with thick 

margins. Histopathologic diagnosis indicated that this lesion was necrotic breast tissue. Although 

some necroses could indicate malignancy, follow-up exams have shown that cancer has not 

appeared in this patient since biopsy two years ago. The LDA considered this case relatively 



benign with a score of 0.33/1.00, whereas the radiologist considered it more indicative of 

malignancy with a score of 85/100. 

 

Discussion 

Previous studies have shown that BI-RADS descriptors for both mammography (4, 38-41) and 

sonography (19, 20, 42) are useful in predicting the likelihood of breast cancer. A previous study 

(33) showed that mammographic and sonographic BI-RADS features as well as Stavros 

ultrasound features (19) could differentiate malignant from benign breast masses with high 

statistical significance. Both mammographic (43, 44), and sonographic (25, 27, 45) features have 

been useful in breast cancer computer-aided diagnosis (CADx) systems as well. Whereas 

previous studies have used other features extracted from the sonogram image, to the best of our 

knowledge this current study is the first CADx study not only to use sonographic BI-RADS 

features but also the first to combine BI-RADS of ultrasound and of mammography.  

 

In order to justify the clinical use of a CADx system on new cases, it is important to estimate its 

generalization performance. We have estimated the generalization performance of both an LDA 

and an ANN on our data set by using a train-validate-retest testing scheme on our data set. This 

is a more rigorous standard than most studies that rely upon train-validate only, also known as 

cross-validation. 

 

The LDA and ANN had virtually indistinguishable classification performance, which indicated that 

the BI-RADS data were highly linear. In general, such results would support the use of the LDA 

model, which is simpler than the nonlinear ANN and therefore less likely to be susceptible to 

overtraining problems. In this study, however, it was demonstrated that there were no problems 

with overtraining, as both models performed very similarly during the retesting phase.  

 



In addition to the whole ROC curve, it is important to consider more clinically relevant threshold 

values in determining the generalization and stability of a CADx system. Since CADx systems 

typically give as output a range of values, applying a certain threshold to the output determines 

the operating point (sensitivity and specificity settings) at which the clinical decision is made. 

Knowing the CADx operating point helps the clinician to incorporate it into an overall diagnostic 

decision. Table 2 showed that the LDA thresholds from the validation ROC curve generalized 

very well to the retest ROC curve in the clinically important high-sensitivity region. The threshold 

stability suggests that these threshold values could be used clinically with the LDA on future 

cases.  

 

Because the task of collecting many features is quite cumbersome for the radiologists involved, 

we investigated CADx performance using only a subset of the features by performing stepwise 

feature selection. Of the 14 selected features, three had also been found to have high malignancy 

predictive value from a previous study (33): Stavros mass shape, mammographic mass margin, 

and sonographic lesion boundary. To assure that the selected features were adequate to allow 

the CADx system to generalize well on new cases, a train-test-retest scheme was required. Only 

the train/validate set was used to select the features, which were then tested in a CADx model on 

the retest set. As shown in Figure 2, an LDA with only the 14 stepwise-selected features 

performed just as well as an LDA with all 37 features. The small number of features required for 

good performance suggests that this CADx model may be able to offer the benefit of a second 

reader to a clinician without greatly slowing the clinician s workflow.  

 

Figure 2 also shows that the LDA distinguished benign from malignant lesions no differently than 

did the radiologists  assessment scores for our data set. Note that for this data set, the actual 

positive predictive value of the clinical decision to refer to biopsy was 37%, which is typical of this 

institution. Also, since this study included only biopsy-verified cases, over this special population 

the sensitivity for cancer detection is by definition 100% and the specificity is 0%. The results of 



this study suggest that the radiologists may be able to achieve considerable improvements in 

performance, such as 52% specificity, 60% PPV, and 98% NPV by adjusting their mental 

threshold to reduce their sensitivity slightly to 98% sensitivity, i.e., resulting in the delayed 

diagnosis of 2% of actual cancers which may be identified by interval change at a short-term 

follow-up diagnostic study. Likewise, if the radiologists were hypothetically to adopt all the 

recommendations of the computer model, they could have perhaps attained 37% specificity, 53% 

PPV, and 97% NPV at that same 98% sensitivity level.  

 

The radiologists in this study were experienced dedicated breast imagers. It is hoped that less 

specialized radiologists using such a system could improve their diagnostic performance closer to 

that of breast specialists. In practice, it remains to be determined how radiologists would use the 

results from such computer models, in particular whether they would modify their biopsy 

recommendation in order to refer to short-term follow-up those cases deemed to be very likely 

benign. It also remains unknown whether the 2% of cancers mistakenly referred to follow up 

would prove to remain early stage such as with the current clinical practice of following probably 

benign cases.  

 

As described in a previous study using this data set (33), this study s weaknesses with the BI-

RADS data collection included the possibility of multiple lesions per patient, the limitation to solid 

masses rather than cysts, and the inclusion of only biopsy-proven lesions in the study. 

Additionally, radiologists allowed the mammogram to influence their recording of the sonographic 

features, because they analyzed the mammogram immediately before the sonogram.  The study 

was organized in this manner to better reflect actual clinical practice in which the mammogram is 

obtained immediately prior to the sonogram and decision are made using all available data. They 

also could have shifted their diagnostic sensitivity and specificity levels from their usual clinical 

levels because they were aware that the cases had been resolved and therefore their 

assessment ratings did not directly affect patient care.  



 

In conclusion, the models  good classification and generalization performance on our data set 

suggest that the models could be used as a computer-aided diagnosis (CADx) system for future 

mass lesions. Since the LDA threshold values generalized well, the desired operating point on the 

ROC curve could be set for future cases, increasing the usefulness of the CADx system. Because 

the stepwise-selected features were adequate for good classification and generalization, they 

could be used in a CADx system that would require only minimal feature collection and burden on 

the clinician s workflow. In this study we were not trying to improve diagnostic accuracy of 

dedicated breast imagers, but rather we hope to offer a tool to radiologists specializing in other 

specialties that will allow a substantial decrease in the number of unnecessary benign breast 

biopsies will minimizing the number of delayed breast cancer diagnoses. 
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Tables 

Table 1: Generalization of the LDA ROC Curve  

Performance 
measure 

Cross validation on 
train/validate set 

Retest on retest set p-value for difference 
in means 

AUC 0.92 ± 0.01 0.92 ± 0.02 0.81 

0.90AUC 0.54 ± 0.08 0.52 ± 0.08 0.87 

Spec at 98% sens 0.34 ± 0.13 0.37 ± 0.10 0.89 

PPV at 98% sens 0.44 ± 0.06 0.53 ± 0.05 0.21 

NPV at 98% sens 0.97 ± 0.02 0.97 ± 0.01 0.92 

 

Caption: Table 1 shows the LDA s generalization by comparing the LDA s classification 

performance for 100-fold cross validation on the train/validate set (the original 500 cases) to the 

performance on the retest set (the latest 303 cases). The first column contains the various ROC 

performance metrics, whereas the LDA s score on these metrics are appears in column 2 for the 

train/validate set and in column 3 for the retest set. The values are shown at the mean plus or 

minus one standard deviation, as determined by bootstrap analysis of the ROC curves. The last 

column shows the two-tailed p-values for the difference in the two sets  performance metric 

values, as determined by two-sided t tests. The LDA achieved high classification performance. 

Since there were no statistically significant differences between the performance metrics, the LDA 

performed equivalently on cross validating on the train/validate set and on retesting on the retest 

set: The LDA generalized well. 



Table 2: Generalization of the LDA Threshold  

LDA 
Threshold 

TPF on Validate 
ROC 

TPF on Retest 
ROC 

FPF on Validate 
ROC 

FPF on Retest 
ROC 

0.0782 0.953 0.945 0.429 0.466 
0.0373 0.976 0.976 0.613 0.591 
0.0201 0.982 0.984 0.728 0.739 
0.0098 1 1 0.879 0.886 
 

Caption: The LDA thresholds from the validation ROC curve generalized very well to the retest 

ROC curve. The same threshold value determined very similar true-positive fraction (sensitivity) 

and false-positive fraction (1-specificity) operating points on both ROC curves. Such performance 

stability is clinically important for computer-aided diagnosis (CADx) systems; knowing the CADx 

operating point helps the clinician to incorporate it into an overall diagnostic decision.



 Table 3: LDA vs. Radiologists  Overall Gut Assessment on the Retest Set 

Performance measure LDA Radiologists  overall gut 
assessment 

p-value for difference 
in means 

AUC 0.92 ± 0.02 0.92 ± 0.02 0.98 

0.90AUC 0.52 ± 0.08 0.52 ± 0.06 0.98 

Spec at 98% sens 0.37 ± 0.10 0.52 ± 0.08 0.25 

PPV at 98% sens 0.53 ± 0.05 0.60 ± 0.05 0.25 

NPV at 98% sens 0.97 ± 0.01 0.98 ± 0.01 0.25 

 

Caption: The table compares the LDA to the radiologists  overall gut assessment on the retest 

set. Column 1 lists the ROC performance metrics, column 2 the LDA s performance, column 3 the 

radiologists  performance, and column 4 the two-tailed p-value for the difference in means. The p-

values and errors on the classification performance metric values were determined by ROC 

bootstrap analysis. Both the LDA and the radiologists achieved excellent classification 

performance and performed equivalently, with no statistically significant performance differences 

between them. 



Figures 

Figure 1 a: Full ROC Curves: Validation vs. Retest 

 

 



Figure 1 b: Partial ROC Curves: Cross Validation vs. Retest 

 

 

Figure 1 Caption: Both the LDA and the ANN generalized well on the retest data set, as shown by 

their overlapping ROC curves. The validation ROC curves (solid curves) lie very close to the 

retest ROC curves (dashed curves). The LDA and ANN had virtually indistinguishable 

classification performances. 



Figure 2 a: Full ROC Curves: LDA vs. Radiologist, Retest Set 

 



Figure 2 b: Partial ROC Curves: LDA vs. Radiologist, Retest Set 

 

 

Figure 2 Caption: Shown here are the ROC curves for the LDA with all features, for the LDA with 

the stepwise-selected features, and for the radiologists  assessment of malignancy. In retesting, 

the LDA, both using all features and using the stepwise-selected features, performed very 

similarly to the radiologists  overall gut assessment scoring. There were no statistically significant 

differences in any of the performance metrics among the three ROC curves (p > 0.2). Although 

the radiologist curve crossed over the LDA curves several times, even at the points of greater 

divergence, the differences were not statistically significant (p > 0.2). 



Figure 3 a: Histograms of the LDA Output Values 

 

 

 



Figure 3 b: Histograms of the Radiologists  Overall Gut Assessment 

 

 

Figure 3 Caption: Plotted above are histograms of the LDA output values (a) and of the 

radiologists  overall gut assessment values (b). The histogram counts for the truly benign lesions 

are shown in gray, and those for the truly malignant lesions are shown in black. For classification, 

a threshold would be applied to the LDA output, so that output values below the threshold would 

be designated benign and those above it would be designated malignant.  



Figure 4 a: Mammogram of Patient 1 
 

  
 

Figure 4a Caption: Mediolateral oblique mammographic view in 52 year-old woman demonstrates 

an oval, well-circumscribed, equal density mass in the superior left breast. 

 
 



Figure 4 b: Sonogram of Patient 1 
 

 
 

Figure 4b Caption: Ultrasound views of the mass demonstrate an oval, hypoechoic solid mass 

with circumscribed margins, parallel orientation and posterior acoustic shadowing The 

histopathology result indicated a benign fibroadenoma. Both the LDA and radiologist correctly 

considered this case very benign, giving scores of 0.02/1.00 and 0/100, respectively.  

 



Figure 5 a: Mammogram of Patient 2 

 

  
 

Figure 5a Caption: Mediolateral oblique mammographic view in 57 year-old woman 

demonstrates an ill-defined, irregularly-shaped, equal density mass in the superior right 

breast. 

 



Figure 5 b: Sonogram of Patient 2 
 

 
 

Figure 5b Caption: US views of the mass demonstrate an ill-defined, irregularly-shaped mass with 

posterior acoustic shadowing and not-parallel orientation. Histopathologic diagnosis indicated that 

this malignant lesion was invasive ductal carcinoma. Both the LDA and radiologist correctly 

considered this case very malignant, with scores of 0.99/1.00 and 95/100, respectively.  



Figure 6 a: Mammogram of Patient 3 

 

 
 

Figure 6a Caption: Mediolateral oblique mammographic view in 26 year-old woman demonstrates 

an ill-defined, oval-shape, equal density mass in the posterior left breast. 

 

 



Figure 6 b: Sonogram of Patient 3 
 

 
 

Figure 6 Caption: Sonographic views of the mass demonstrate an oval, circumscribed mass with 

parallel orientation and no posterior acoustic features. Histopathologic diagnosis indicated that 

this lesion was necrotic breast tissue. Follow-up exams confirm no interval change two years post 

biopsy. The LDA considered this case relatively benign with a score of 0.33/1.00, whereas the 

radiologist considered it more indicative of malignancy with a score of 85/100.  
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ABSTRACT 

 
Data sets with relatively few observations (cases) in medical research are common, especially if the data are 

expensive or difficult to collect. Such small sample sizes usually do not provide enough information for computer 

models to learn data patterns well enough for good prediction and generalization. As a model that may be able to 

maintain good classification performance in the presence of limited data, we used decision fusion. In this study, we 

investigated the effect of sample size on the generalization ability of both linear discriminant analysis (LDA) and 

decision fusion. Subsets of large data sets were selected by a bootstrap sampling method, which allowed us to 

estimate the mean and standard deviation of the classification performance as a function of data set size. We applied 

the models to two breast cancer data sets and compared the models using receiver operating characteristic (ROC) 

analysis. For the more challenging calcification data set, decision fusion reached its maximum classification 

performance of AUC = 0.80±0.04 at 50 samples and pAUC = 0.34±0.05 at 100 samples. The LDA reached a lower 

performance and required many more cases, with a maximum of AUC = 0.68±0.04 and pAUC = 0.12±0.05 at 450 

samples. For the mass data set, the two classifiers had more similar performance, with AUC = 0.92±0.02 and pAUC 

= 0.48±0.02 at 50 samples for decision fusion and AUC = 0.92±0.03 and pAUC = 0.55±0.04 at 500 samples for the 

LDA. 

 

Keywords:  Decision Fusion, Computer-Aided Diagnosis, Sample Size, Receiver Operating Characteristic (ROC) 

Curve, Classification, Breast Cancer 

 

 
1. INTRODUCTION 

 

Many medical data sets are difficult and expensive to collect, often resulting in limited data set size. A small number 

of cases usually precludes accurate predictive modeling. Early modeling offers many advantages, such as earlier 

identification of data collection problems, of unsatisfactory patient sampling, of expensive but uninformative 

features, and perhaps earlier discovery of flaws in the scientific experiment design. Many medical experiments 

expose subjects to possibly avoidable risk that could be detected by better and earlier modeling.  

 

The amount of available data affects each model differently. Model complexity tends to produce a tradeoff between 

modeling power and generalization; simpler models may be more robust to noise in the data but may not be able to 

capture the full complexity of the data’s patterns, whereas more complicated models may model the patterns better 

but are more susceptible to overfitting. In addition to the number of samples available, the ratio of number of 

features to number of samples can also affect classifier performance. Many classical models tend to overtrain on 

data sets with few samples and many features. This overtraining effect becomes more pronounced with smaller 

sample size.  

 

In this study, we investigated the effect of sample size on the generalization ability of two computer-aided diagnosis 

(CADx) models. The first model was linear discriminant analysis (LDA), a common CADx model for breast cancer 

data. The second model was a decision-fusion method that has shown promise for small, noisy data sets
1
. Our 

decision-fusion technique offers the significant advantage that it can reduce the dimensionality of the feature space 



of the classification problem by assigning a classifier to each feature separately. Considering only one feature at a 

time greatly reduces the complexity of the problem by avoiding the need to estimate multidimensional probability 

density functions (PDFs) of the feature space. Accurately estimating multidimensional PDFs likely requires many 

more observations than a typical medical data set contains
2
. Considering only one-dimensional PDFs may allow the 

decision-fusion technique to reach asymptotic testing performance using many fewer cases than other classifiers 

require. 

 

Other benefits of decision fusion are that it is robust in noisy data
3
, is not overly sensitive to the likelihood ratio 

threshold values
4
, and can handle missing data values

5
. Our decision-fusion technique can also be tuned to optimize 

arbitrary performance metrics that may be more clinically relevant, unlike more traditional classification algorithms 

that optimize mean squared error, such as the LDA. 

 

 

II. METHODS 

 
2.1 Data 

This study used two breast cancer data sets: one of mass lesions and one of calcification lesions. 

 

The mass lesion data set is an extension of the earlier subset described by Hong, et al. from this research group
6
. The 

cases were collected between 2000 and 2005 at Duke University. The data set included 803 lesions, of which 296 

were malignant and 507 were benign, and 389 were palpable and 414 nonpalpable. The patient ages ranged from 17 

to 87 years, with a median age of 50 years. Patients underwent both mammography and sonography, and outcome 

was determined through definitive histopathological diagnosis. One of three dedicated breast radiologists with 6-11 

years of experience described each lesion using Breast Imaging Reporting and Data System (BI-RADS
TM

, American 

College of Radiology, Reston, VA)
7
 mammography, BI-RADS sonography, and Stavros sonography descriptors

6
. 

Of the total 38 features, 13 were mammographic, 22 were sonographic, and 3 were patient history features. 

 

Second, we used a calcification data set that consisted of 1508 mammogram microcalcification lesions from the 

Digital Database for Screening Mammography (DDSM)
8
, which is publicly available. The outcomes were verified 

by histopathological diagnosis and follow-up for certain benign cases, yielding 811 benign and 697 malignant 

calcification lesions. The feature groups were 13 computer-extracted calcification cluster morphological features, 91 

computer-extracted texture features of the lesion background anatomy, 2 radiologist-interpreted findings, 2 

radiologist-extracted features from the BI-RADS lexicon and patient age. In total, calcification data C set had 109 

features and a sample-to-feature ratio of approximately 14:1. Each mammogram was digitized with a resolution of 

either 43.5 microns (Howtek 960 or MultiRad850 digitizer) or 50 microns (Lumisys 200 Laser digitizer). We used a 

512x512 pixel ROI centered on the centroid of each lesion (using lesion outlines drawn by the DDSM radiologists) 

for image processing and for generating the computer-extracted features. We extracted morphological and texture 

(spatial gray level dependence matrix) features, which were shown to be useful in previous studies of CADx such as 

by Chan, et al.
9
. 

 

2.1 Decision Fusion 

For the decision-fusion classifier, histograms of each feature were constructed as an estimate of the probability 

density in order to construct an empirical likelihood ratio for that feature. Then, a binary decision was made by 

comparing the likelihood ratio value to a given threshold, which in turn determined the sensitivity and specificity of 

the decision. Finally, the decision fusion theory allowed the individual binary decisions to be combined optimally to 

produce one final binary decision.  

 

First, each feature was considered separately and classified by a likelihood ratio classifier. According to decision 

theory, the likelihood ratio is the optimal detector to determine the presence or absence of a signal in noise
10

. The 

null hypothesis (H0) was that the signal is not present in the noisy features, while the alternative hypothesis (H1) was 

that the signal is present.  

 

! 

H
0
: X = N

H
1
: X = S + N

 (1) 

 



The likelihood ratio is the probability of the features under the malignant case divided by the probability of the 

features under the benign case: 

 

! 

"(X) =
P(X |H1)

P(X |H0)
, (2) 

 

where p(X|H1) is the PDF of the observation data X given that the signal is present, and p(X|H0) is the PDF of the 

data X given that the signal is not present. The likelihood ratio is optimal under the assumption that the PDFs 

accurately reflect the true densities. For classification, we can apply a threshold value, τ, to the likelihood ratio to 

produce a binary decision, u, about the presence of the signal. 
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Since we assigned a separate likelihood ratio classifier to each of p features, we applied a separate threshold to each 

classifier’s output value to produce p binary decisions. A genetic algorithm searched over the joint set of thresholds 

in order to maximize the classification performance of the fused binary decisions. The genetic algorithm search time 

was capped at 30 generations for this study due to computational cost. 

 

Decision-fusion theory describes how to combine local binary decisions optimally to determine the presence or 

absence of a signal in noise
11-15

. The decision fuser optimally fuses all the local decisions according to the operating 

points on the receiver operating characteristic (ROC) curve at which the local decisions were made. Assuming 

statistically independent decisions, the likelihood ratio of the fused classifier is a product over the “yes, signal 

present” (ui = 1) decisions multiplied by a similar product over the “no, signal absent” (ui = 0) decisions.  
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where Pdi is the probability of detection or sensitivity, and Pfi is the probability of false detection, or (1-specificity), 

for the i
th

 local decision. The ROC curve can be computed from the unique likelihood-ratio values of the fused 

classifier as shown in Equation (5). 
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2.2 Linear Discriminant Analysis 

The baseline classifier was linear discriminant analysis (LDA), which served as a benchmark for the linear 

separability of the data set.  

 

2.3 Sampling and Validation 

In order to study the effect of sample size on the classifiers’ performances, we randomly selected subsets of the data 

sets. We varied the number of selected cases from 50 to 500, which covers typical data set sizes in preliminary 

CADx research. Ten random draws of each data subset size were drawn to assess selection effects. On each subset, 

both classifiers were trained and validated using 10-fold cross-validation. For each sample size such as 100 cases, 

classifiers were developed using ten bootstrap samples of that number of cases, which allowed the calculation of the 

mean AUC and pAUC values along with their standard deviations. 

 

2.4 Classifier Comparison 

Each classifier was evaluated using ROC analysis. Two clinically interesting summary metrics of the ROC curve 

were used: the area under the curve (AUC) and the normalized partial area of the curve (pAUC), which is measured 

above sensitivity of Pd = 0.9. 

 



 

III. RESULTS 

 

Figure 1 plots the classification performance against the number of cases. The classifiers’ performances were scored 

both by ROC AUC (Fig. 1a and 1c) and pAUC (1b and 1d).  

On the calcification data (Fig. 1a and 1b) decision fusion achieved a maximum of AUC = 0.80±0.04 at 50 samples 

and pAUC = 0.34±0.05 at 100 samples. The LDA had a lesser performance, with AUC = 0.68±0.04 and pAUC = 

0.12±0.05 at 450 samples. The LDA had the expected testing trend of slowly increasing performance with 

increasing sample size, but decision fusion showed the opposite trend. Perhaps inadequately trained, decision fusion 

decreased with sample size both in AUC and pAUC. Note that all of these are validation results from k-fold cross-

validation, which normally should minimize effects of training bias. 

For the mass lesion data (Fig. 1b and 1d), the two classifiers’ performances had more similar trends. Decision fusion 

reached a maximum of AUC = 0.92±0.02 and pAUC = 0.48±0.02 at 50 samples, and the LDA reached AUC = 

0.92±0.03 and pAUC = 0.55±0.04 at 500 samples. No significant performance differences between the classifiers 

were seen in sample sizes greater than 100. For very small data sets of 50 cases, decision fusion outperformed the 

LDA. In both data sets, decision fusion approached its final AUC value with many fewer cases than the LDA 

required. All plots except Fig. 1b showed that decision fusion had a smaller slope than the LDA. 

 

 
 (a) AUC vs. Sample Size, Calcification Data (b) pAUC vs. Sample Size, Calcification Data 

 

 
 (c) AUC vs. Sample Size, Mass Data (d) pAUC vs. Sample Size, Mass Data 

Figure 1: Classifier performance vs. Sample Size 



Decision fusion significantly outperformed the LDA on the calcification data set. The performance difference was 

greatest for small data sets. However, on the larger data sets, the performance gap narrowed to 0.06. In part (b), 

decision fusion achieved pAUC = 0.34±0.05 at 100 samples and then fell to pAUC = 0.2±0.02 at 500 samples. 

Although the two classifiers had very similar performance on the mass data set, decision fusion still outperformed the 

LDA for very small sample sizes.   

 

 

IV. DISCUSSION 

 
Decision fusion had its biggest classification performance gain over the LDA on the noisier, more nonlinear data set, 

the calcification data set. On the mass data set, both the LDA and decision fusion performed very similarly for data 

sets larger than 50 samples. On very small data sets of 50 samples, which are common among initial CADx studies, 

decision fusion outperformed the LDA. For the mass data set at least, a particular strength of the decision-fusion 

algorithm is that it is able to estimate asymptotic testing performance with many fewer cases than other classifiers 

require. Figure 1 shows that decision fusion was able to achieve approximately the same testing performance with 

50 cases as with 500 cases.  

 

The general downward slope of the decision fusion curves for the calcification data set may be due to inadequate 

training. For computational convenience, we limited the genetic algorithm’s search time to only 30 generations. 

Whereas 30 generations were adequate for small data sets smaller than 150 cases, larger data sets required more 

genetic algorithm generations for complete optimization. A much longer run of 3000 generations on all available 

1508 cases in the calcification lesion data set improved decision fusion’s performance under 100-fold cross-

validation to AUC = 0.85±0.01 and pAUC = 0.28±0.03, which exceeded the performance for all data points shown 

in Fig. 1a and 1b. A similar more thorough optimization on all available 803 cases in the mass data set allowed 

decision fusion to reach AUC = 0.94±0.01 and pAUC = 0.63±0.07, which likewise also exceeded the performances 

in Fig. 1c and 1d. 

 

The improvements were usually significant for the more challenging calcification data set, but not for the mass data 

set. Such a statement may not reflect the full diversity of these data sets, which differ in many respects, including 

linear separability, numbers of cases, numbers and types of features, and feature correlations. Future work will 

explore the contribution of such factors using controlled simulation data sets in order to understand the full potential 

and limitations of the decision-fusion technique. 
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